<u>α-β-ALMOST COMPACTNESS FOR CRISP SUBSETS OFA</u> <u>FUZZY TOPOLOGICAL SPACE</u>

ANJANA BHATTACHARYYA¹

ABSTRACT :

This paper deals with a new type of compactness, viz., α - β -almost compactness for crisp subsets of a fuzzy topological space X by using the concept of α -shading initiated by Gantner et al. [5]. Several characterizations of such subsets are obtained and also taking ordinary nets and powerset filterbases as basic appliances some characterizations of such subsets have been done.

KEY WORDS : α - β -almost compact space, α - β -adherent point of net and filterbase, α - β -interiorly finite intersection property.

2000 AMS SUBJECT CLASSIFICATION CODE

Primary 54 A 40 Secondary 54 D 20

¹DEPARTMENT OF MATHEMATICS, VICTORIA INSTITUTION (COLLEGE)

78B, A.P.C. ROAD, KOLKATA - 700009, INDIA

The author acknowledges the financial support from UGC (Minor Research Project), New Delhi

A Monthly Double-Blind Peer Reviewed Refereed Open Access International e-Journal - Included in the International Serial Directories Indexed & Listed at: Ulrich's Periodicals Directory ©, U.S.A., Open J-Gage as well as in Cabell's Directories of Publishing Opportunities, U.S.A.

> International Journal of Engineering & Scientific Research http://www.ijmra.us

INTRODUCTION

From very beginning, many mathematicians have engaged themselves to introduce different types of compactness in a fuzzy topological space (henceforth to be abbreviated as fts). In 1978, Gantner, Steinlage and Warren [5] introduced a sort of α -level covering termed as α -shading and using this concept a new type of compactness, viz., α compactness has been introduced which is a generalization of compactness in an fts. Using the idea of α -shading, in this paper we define the idea of α - β -almost compactness in an fts. A suitably defined adherence of ordinary nets and power-set filterbases, α - β -almost compactness for crisp subsets is also characterized, these characterizations being also true for α - β -almost compactness of X if one puts A = X.

PRELIMINARIES

Throughout the paper, by (X, τ) or simply by X, we mean an fts in the sense of Chang [3]. By a crisp subset A of an fts X, we always mean A is an ordinary subset of the set X, the underlying structure of the set X being a fuzzy topology τ , whereas a fuzzy set A [9] in an fts X denotes, as usual, a function from X to the closed interval I = [0, 1] of the real line, i.e., $A \in I^X$. For a fuzzy set A, the closure [3] and interior [3] of A in X will be denoted by cl A and *int A* respectively. The support of a fuzzy set A in X will be denoted by suppA and is defined by $suppA = \{x \in X : A(x) \neq 0\}$. A fuzzy point [8] in X with the singleton support $\{x\} \subseteq X$ and the value t (0 < t ≤ 1) at x will be denoted by x_t . 0_x and 1_x are the constant fuzzy sets taking respectively the constant values 0 and 1 on X. The complement of a fuzzy set A in X will be denoted by $1_X \setminus A$ [9], defined by $(1_X \setminus A)(x) = 1 - A(x)$, for each $x \in X$. For any two fuzzy sets A and B in X, we write $A \leq B$ iff $A(x) \leq B(x)$, for each $x \in X$, while we write AqB to mean A is quasi-coincident (q-coincident, for short) with B [8], i.e., if there exists $x \in X$ such that A(x) + B(x) > 1; the negation of these two statements are written as $A \leq B$ and $A\bar{q}B$ respectively. A fuzzy set A in X is called fuzzy regular open [1] if A =int cl A. A fuzzy set B is called a quasi-neighbourhood (q-nbd, for short) [8] of a fuzzy set A if there is a fuzzy open set U in X such that $qU \leq B$.

A Monthly Double-Blind Peer Reviewed Refereed Open Access International e-Journal - Included in the International Serial Directories Indexed & Listed at: Ulrich's Periodicals Directory ©, U.S.A., Open J-Gage as well as in Cabell's Directories of Publishing Opportunities, U.S.A. International Journal of Engineering & Scientific Research http://www.ijmra.us

§ 1. FUZZY β -OPEN AND FUZZY β -CLOSED SETS : SOME RESULTS

Now we recall some definitions, theorem and result for ready references.

DEFINITION 1.1 [4]. A fuzzy set A in an fts X is said to be fuzzy β -open if $A \leq clintclA$. The complement of a fuzzy β -open set is called fuzzy β -closed.

DEFINITION 1.2 [4]. The union of all fuzzy β -open sets in an fts X, each contained in a fuzzy set A in X, is called the fuzzy β -interior of A and is denoted by β *intA*. A fuzzy set A is fuzzy β -open if and only if $A = \beta$ *intA*.

DEFINITION 1.3 [2]. A fuzzy set A in an fts X is called a fuzzy β -open q-nbd of a fuzzy point x_t in X if there exists a fuzzy β -open set V in X such that $x_t qV \le A$.

DEFINITION 1.4 [4]. The intersection of all fuzzy β -closed sets in an fts X containing the fuzzy set A is called fuzzy β -closure of A, to be denoted by βclA . A fuzzy set A in an fts X is fuzzy β -closed if and only if $A = \beta clA$.

RESULT 1.5 [2]. A fuzzy point x_t in an fts X belongs to the fuzzy β -closure of a fuzzy set A in X if and only if every fuzzy β -open q-nbd of x_t is q-coincident with A.

THEOREM 1.6 [2]. For any two fuzzy β -open sets A and B in an fts X, $A\bar{q}B \Rightarrow \beta clA \bar{q}B$ and $A\bar{q}\beta clB$.

§ 2. α -β-ALMOST COMPACTNESS : CHARACTERIZATIONS

We first recall the definition of α -shading given by Gantner et al. [5]. When this concept is applied to arbitrary crisp subsets of *X* we get the following definition.

http://www.ijmra.us

A Monthly Double-Blind Peer Reviewed Refereed Open Access International e-Journal - Included in the International Serial Directories Indexed & Listed at: Ulrich's Periodicals Directory ©, U.S.A., Open J-Gage as well as in Cabell's Directories of Publishing Opportunities, U.S.A. International Journal of Engineering & Scientific Research

DEFINITION 2.1 [5].Let A be a crisp subset of an fts X. A collection \mathscr{U} of fuzzy sets in X is called an α -shading (where $0 < \alpha < 1$) of A if for each $x \in A$, there is some $U_x \in \mathscr{U}$ such that $U_x(x) > \alpha$. If, in addition, the members of \mathscr{U} are fuzzy open (β -open) then \mathscr{U} is called a fuzzy open (resp. β -open) α -shading of A.

DEFINITION 2.2. Let X be an fts and A be a crisp subset of X. A is said to be α -compact [5] (resp., α -almost compact [7]) if for every fuzzy open α -shading ($0 < \alpha < 1$) \mathcal{U} of A, there is a finite (resp., finite proximate) α -subshading of A, i.e., there is a finite subcollection \mathcal{U}_0 of \mathcal{U} such that { $U: U \in \mathcal{U}_0$ } (resp., { $cl U: U \in \mathcal{U}_0$ }) is again an α -shading of A. If A = X in addition, then X is called an α -compact (resp., α -almost compact) space.

We now set the following definition.

DEFINITION 2.3. Let X be an fts and A, a crisp subset of X. A is called α - β -almost compact if each fuzzy β -open α -shading of A has a finite β -proximate α -subshading, i.e., there exists a finite subcollection \mathcal{U} of \mathcal{U} such that { $\beta clU : U \in \mathcal{U}$ } is again an α -shading of A. If, in addition, A = X, then X is called an α - β -almost compact space.

It follows from Definition 2.3 that

THEOREM 2.4.(a) Every finite subset of an fts X is α - β -almost compact. (b) If A_1 and A_2 are α - β -almost compact subsets of an fts X, then so is $A_1 \cup A_2$. (c) X is α - β -almost compact if X can be written as the union of finite number of α - β -almost compact sets in X.

As $\beta clA \leq clA$, for any fuzzy set A in an fts X, it is clear from definition that α - β -almost compactness imply α -almost compactness, but not conversely. To achieve the converse we need to define some sort of regularity condition in our setting. The following definition serves our purpose.

A Monthly Double-Blind Peer Reviewed Refereed Open Access International e-Journal - Included in the International Serial Directories Indexed & Listed at: Ulrich's Periodicals Directory ©, U.S.A., Open J-Gage as well as in Cabell's Directories of Publishing Opportunities, U.S.A. International Journal of Engineering & Scientific Research http://www.ijmra.us

DEFINITION 2.5. An fts X is said to be α - β -regular, if for each point $x \in X$ and each fuzzy open set U_x in X with $U_x(x) > \alpha$, there exists a fuzzy β -open set V_x in X with $V_x(x) > \alpha$ such that $\beta c l V_x \leq U_x$.

Two other equivalent ways of defining α - β -regularity are given by the following result.

THEOREM 2.6. For an fts X, the following are equivalent :

- (a) X is α β -regular.
- (b) For each point x ∈ X and each fuzzy closed set F with F(x) < 1 − α, there is a fuzzy β-open set U such that (βclU)(x) < 1 − α and F ≤ U.</p>
- (c) For each $x \in X$ and each fuzzy closed set F with $F(x) < 1 \alpha$, there exist fuzzy β -open sets U and V such that $V(x) > \alpha$, $F \leq U$ and $U\overline{q}V$.

PROOF. (a) \Rightarrow (b) : Let $x \in X$ and F be a fuzzy closed set with $F(x) < 1 - \alpha$. Put $V = \mathbf{1}_X \setminus F$. Then V is a fuzzy open set and $V(x) > \alpha$. By (a), there is a fuzzy β -open set W in X with $W(x) > \alpha$ and $\beta clW \le V = \mathbf{1}_X \setminus F$. Then $F \le \mathbf{1}_X \setminus \beta clW = \beta int(\mathbf{1}_X \setminus W) = U$ (say). Then U is fuzzy β -open in X. Also, $\beta clU = \beta cl(\beta int(\mathbf{1}_X \setminus W)) = \beta cl(\mathbf{1}_X \setminus \beta clW) = \mathbf{1}_X \setminus \beta int(\beta clW) \le \mathbf{1}_X \setminus W$. Thus $(\beta clU)(x) \le (\mathbf{1}_X \setminus W)(x) < 1 - \alpha$.

(b) \Rightarrow (a): Let $x \in X$ and U be any fuzzy open set in X with $U(x) > \alpha$. Let $F = 1_X \setminus U$. Then F is a fuzzy closed set in X with $F(x) < 1 - \alpha$. By (b), there is a fuzzy β -open set V such that $(\beta clV)(x) < 1 - \alpha$ and $F \leq V$. So $(1_X \setminus \beta clV)(x) > \alpha$, i.e., $W(x) > \alpha$ where $W = 1_X \setminus \beta clV = \beta int(1_X \setminus V)$ is a fuzzy β -open set in X. Now $\beta clW = \beta cl(1_X \setminus \beta clV) = 1_X \setminus \beta int(\beta clV) \leq 1_X \setminus V \leq 1_X \setminus F = U$. Hence (a) follows.

(b) \Rightarrow (c) : For a given $x \in X$ and a fuzzy closed set F with $F(x) < 1 - \alpha$, there exists (by (b)) a fuzzy β -open set U such that $(\beta clU)(x) < 1 - \alpha$ and $F \leq U$. Then the fuzzy point $x_{1-\alpha} \notin \beta clU$. Hence by Definition 1.4 and Result 1.5, there is a fuzzy β -open set V in X such that $x_{1-\alpha}qV$ and $V\bar{q}U$, i.e., $V(x) + 1 - \alpha > 1 \Rightarrow V(x) > \alpha$.

A Monthly Double-Blind Peer Reviewed Refereed Open Access International e-Journal - Included in the International Serial Directories Indexed & Listed at: Ulrich's Periodicals Directory ©, U.S.A., Open J-Gage as well as in Cabell's Directories of Publishing Opportunities, U.S.A. International Journal of Engineering & Scientific Research http://www.ijmra.us

<u>ISSN: 2347-6532</u>

(c) \Rightarrow (b) : Let $x \in X$, and F, a fuzzy closed set in X with $F(x) < 1 - \alpha$. By (c), there exist fuzzy β -open sets U and V such that $V(x) > \alpha$, $F \leq U$ and $U\bar{q}V$. Now $V(x) > \alpha \Rightarrow x_{1-\alpha}qV$. Then as $U\bar{q}V$, by Theorem 1.6, $\beta c l U\bar{q}V \Rightarrow (\beta c l U)(x) \leq 1 - V(x) < 1 - \alpha$.

THEOREM 2.7. In an α - β -regular fts X, the α - β -almost compactness of a crisp subset A of X implies its α -compactness (and hence α -almost compactness).

PROOF. Let \mathscr{U} be a fuzzy open α -shading of an α - β -almost compact set A in an α - β -regular fts X. Then for each $a \in A$, there exists $U_a \in \mathscr{U}$ such that $U_a(a) > \alpha$. By α - β -regularity of X, there is a fuzzy β -open set V_a in X with $V_a(a) > \alpha$ such that $\beta c l V_a \leq U_a \dots (1)$. Let $\mathscr{V} = \{V_a : a \in A\}$. Then \mathscr{V} is a fuzzy β -open α -shading of A. By α - β -almost compactness of

A, there is a finite subset A_0 of A such that $\mathscr{V}_0 = \{\beta c l V_a : a \in A_0\}$ is an α -shading of A. By (1), $\mathscr{U}_0 = \{U_a : a \in A_0\}$ is then a finite α -subshading of \mathscr{U} . Hence A is α -compact (and hence α almost compact).

In what follows in the rest of this paper we would like to give different subsets of X, where \overline{X} is endowed, as, usual, with a fuzzy topology τ .

Mashhour et al. [6] defined a fuzzy set A in an fts X to be fuzzy regular semiopen if there is a fuzzy regular open set U such that $U \le A \le clU$.

REMARK 2.8. It is obvious that fuzzy regular semiopen set is fuzzy β -open. Indeed, A is fuzzy regular semiopen \Rightarrow there exists a fuzzy regular open set U in X such that $U \leq A \leq clU = clintclU \leq clintclA \Rightarrow A \leq clintclA$.

LEMMA 2.9. If *V* be a fuzzy β -open set, then *intclV* is fuzzy regular open.

PROOF.*intclV* \leq *intcl(clintclV*) (as *V* is fuzzy β -open in *X*) = *intcl(intclV*). Again *intcl(intclV*) \leq *intclV*.

Therefore, *intcl(intclV)* = *intclV*. Hence *intclV* is fuzzy regular open.

A Monthly Double-Blind Peer Reviewed Refereed Open Access International e-Journal - Included in the International Serial Directories Indexed & Listed at: Ulrich's Periodicals Directory ©, U.S.A., Open J-Gage as well as in Cabell's Directories of Publishing Opportunities, U.S.A. International Journal of Engineering & Scientific Research http://www.ijmra.us

THEOREM 2.10. A subset A of X is α - β -almost compact if and only if every α -shading of A by fuzzy regular semiopen sets in X has a finite β -proximte α -subshading.

PROOF. The proof follows from the definition of α - β -almost compactness and by the Lemma 2.9 which states that whenever $\{V_i : i \in \Lambda\}$ is a fuzzy β -open α -shading of A, then $\{(intclV_i) \cup V_i : i \in \Lambda\}$ is also an α -shading of A by fuzzy regular semiopen sets.

THEOREM 2.11. A crisp subset A of an fts X is α - β -almost compact iff every family of fuzzy β -open sets, the β -interiors of whose β -closures form an α -shading of A, contains a finite subfamily, the β -closures of whose members form an α -shading of A.

PROOF. It is sufficient to observe that for a fuzzy β -open set U, $U \leq \beta \operatorname{int}(\beta \operatorname{cl} U) \leq \beta \operatorname{cl}(\beta \operatorname{int}(\beta \operatorname{cl} U)) = \beta \operatorname{cl} U$ (Indeed, $\beta \operatorname{cl} U \leq \beta \operatorname{cl}(\beta \operatorname{int} U) \leq \beta \operatorname{cl}(\beta \operatorname{int}(\beta \operatorname{cl} U))$).

THEOREM 2.12. A crisp subset A of an fts X is α - β -almost compact iff for every collection $\{F_i : i \in \Lambda\}$ of fuzzy β -open sets with the property that for each finite subset Λ_0 of Λ , there is x $\in A$ such that $\inf_{i \in \Lambda_0} F_i(x) \ge 1 - \alpha$, one has $\inf_{i \in \Lambda} (\beta cl F_i)(y) \ge 1 - \alpha$, for some $y \in A$.

PROOF. Let *A* be α - β -almost compact, and if possible, let for a collection $\{F_i : i \in \Lambda\}$ of fuzzy β -open sets in *X* with the stated property, $(\bigcap_{i \in \Lambda} \beta c l F_i)(x) < 1 - \alpha$, for each $x \in A$. Then $\alpha < (1_X \setminus \bigcap_{i \in \Lambda} \beta c l F_i)(x) = [\bigcup_{i \in \Lambda} (1_X \setminus \beta c l F_i)](x)$, for each $x \in A$ which shows that $\{1_X \setminus \beta c l F_i : i \in \Lambda\}$ is a fuzzy β -open α -shading of *A*. By α - β -almost compactness of *A*, there is a finite subset Λ_0 of Λ such that $\{\beta c l (1_X \setminus \beta c l F_i) : i \in \Lambda_0\} = \{1_X \setminus \beta int(\beta c l F_i) : i \in \Lambda_0\}$ is an α -shading of *A*. Hence $\alpha < [\bigcup_{i \in \Lambda_0} (1_X \setminus \beta int(\beta c l F_i))](x) = [1_X \setminus (\bigcap_{i \in \Lambda_0} \beta int(\beta c l F_i))](x)$, for each $x \in A$. Then $(\bigcap_{i \in \Lambda_0} F_i)(x) \le [\bigcap_{i \in \Lambda_0} \beta int(\beta c l F_i)](x) < 1 - \alpha$, for each $x \in A$, which contradicts the stated property of the collection $\{F_i : i \in \Lambda\}$.

A Monthly Double-Blind Peer Reviewed Refereed Open Access International e-Journal - Included in the International Serial Directories Indexed & Listed at: Ulrich's Periodicals Directory ©, U.S.A., Open J-Gage as well as in Cabell's Directories of Publishing Opportunities, U.S.A. International Journal of Engineering & Scientific Research http://www.ijmra.us

Volume 3, Issue 4

<u>ISSN: 2347-6532</u>

Conversely, let under the given hypothesis, A be not α - β -almost compact. Then there is a fuzzy β -open α -shading $\mathscr{U} = \{U_i : i \in \Lambda\}$ of A having no finite β -proximate α -subshading, i.e., for every finite subset Λ_0 of Λ , $\{\beta cl U_i : i \in \Lambda_0\}$ is not an α -shading of A, i.e., there exists $x \in A$ such that $\sup_{i \in \Lambda_0} (\beta cl U_i)(x) \leq \alpha$, i.e., $1 - \sup_{i \in \Lambda_0} (\beta cl U_i)(x) = \inf_{i \in \Lambda_0} (1_X \setminus \beta cl U_i)(x) \geq 1 - \alpha$. Hence $\{1_X \setminus \beta cl U_i : i \in \Lambda\}$ is a family of fuzzy β -open sets with the stated property. Consequently, there is some $y \in A$ such that $\inf_{i \in \Lambda} [\beta cl (1_X \setminus \beta cl U_i)](y) \geq 1 - \alpha$. Then $\sup_{i \in \Lambda} U_i(y) \leq \sup_{i \in \Lambda} [\beta int(\beta cl U_i)](y) = 1 - \inf_{i \in \Lambda} [1_X \setminus \beta int(\beta cl U_i)](y) = 1 - \inf_{i \in \Lambda} [\beta cl (1_X \setminus \beta cl U_i)](y) \leq \alpha$. This shows that $\{U_i : i \in \Lambda\}$ fails to be an α -shading of A, a contradiction.

§ 3. CHARACTERIZATIONS OF α-β-ALMOST COMPACTNESS VIA ORDINARY NETS AND POWER-SET FILTERBASES

In this section, we characterize α - β -almost compactness of a crisp subset A of an fts X via α - β -adherent point of ordinary nets and power-set filterbases.

Let us now introduce the following definition :

DEFINITION 3.1. Let $\{S_n : n \in (D, \ge)\}$ (where (D, \ge) is a directed set) be an ordinary net in *A* and \mathscr{F} be a power-set filterbase on *A*, and $x \in X$ be any crisp point. Then *x* is called an α - β -adherent point of

(a) the net $\{S_n\}$ if for each fuzzy β -open set U in X with $U(x) > \alpha$ and for each $m \in D$, there exists $k \in D$ such that $k \ge m$ in D and $(\beta cl U)(S_k) > \alpha$,

(b) the filterbase \mathscr{F} if for each fuzzy β -open set U with $U(x) > \alpha$ and for each $F \in \mathscr{F}$, there exists a crisp point x_F in F such that $(\beta cl U)(x_F) > \alpha$.

International Journal of Engineering & Scientific Research http://www.ijmra.us

A Monthly Double-Blind Peer Reviewed Refereed Open Access International e-Journal - Included in the International Serial Directories Indexed & Listed at: Ulrich's Periodicals Directory ©, U.S.A., Open J-Gage as well as in Cabell's Directories of Publishing Opportunities, U.S.A.

THEOREM 3.2. A crisp subset A of an fts X is α - β -almost compact if and only if every net in A has an α - β -adherent point in A.

PROOF. Suppose A is α - β -almost compact, but there is a net $\{S_n : n \in (D, \geq)\}$ in A $((D, \geq))$ being a directed set, as usual) having no α - β -adherent point in A. Then for each $x \in A$, there is a fuzzy β -open set U_x in X with $U_x(x) > \alpha$, and an $m_x \in D$ such that $(\beta cl U_x)(S_n) \le \alpha$, for all $n \ge m_x$ $(n \in D)$. Now, $\mathcal{U} = \{\mathbf{1}_X \setminus \beta cl U_x : x \in A\}$ is a collection of fuzzy β -open sets such that for any finite subcollection $\{\mathbf{1}_X \setminus \beta cl U_{x_i} : i = 1, 2, ..., k\}$ (say) of \mathcal{U} , there exists $m \in D$ with $m \ge m_{x_i}$, i = 1, 2, ..., k in D such that $(\bigcup_{i=1}^k \beta cl U_{x_i})(S_n) \le \alpha$, for all $n \ge m$ $(n \in D)$, i.e., $\inf_{\substack{i=1 \\ l \le i \le k}} (\mathbf{1}_X \setminus \beta cl U_{x_i})(S_n) \ge 1 - \alpha$, for all $n \ge m$. Hence by Theorem 2.12, there exists some $y \in A$ such that $\inf_{\substack{x \in A \\ x \in A}} [\beta cl (\mathbf{1}_X \setminus \beta cl U_x)](y) \ge 1 - \alpha$, i.e., $(\bigcup_{x \in A} U_x)(y) \le [\bigcup_{x \in A} \beta int (\beta cl U_x)](y) = 1 - [1 - (\sum_{x \in A} (\beta int (\beta cl U_x)))(y)] = 1 - \inf_{\substack{x \in A}} [\beta cl (\mathbf{1}_X \setminus \beta cl U_x)](y) \le 1 - 1 + \alpha = \alpha$. We have, in particular, $U_y(y) \le \alpha$, contradicting the definition of U_y . Hence the result is proved.

Conversely, let every net in A have an α - β -adherent point in A and suppose $\{F_i : i \in \Lambda\}$ be an arbitrary collection of fuzzy β -open sets in X. Let Λ_f denote the collection of all finite subsets of Λ , then (Λ_f, \geq) is a directed set, where for $\mu, \lambda \in \Lambda_f, \mu \geq \lambda$ iff $\mu \supseteq \lambda$. For each $\mu \in \Lambda_f$, put $F_{\mu} = \bigcap \{F_i : i \in \mu\}$. Let for each $\mu \in \Lambda_f$, there be a point $x_{\mu} \in A$ such that $\inf_{i \in \mu} F_i(x_{\mu}) \geq 1 - \alpha \dots (1)$.

Then by Theorem 2.12, it is enough to show that $\inf_{i \in \Lambda} (\beta cl F_i)(z) \ge 1 - \alpha$ for some $z \in A$. If possible, let $\inf_{i \in \Lambda} (\beta cl F_i)(z) < 1 - \alpha$, for each $z \in A$...(2).

Now, $S = \{x_{\mu} : \mu \in (\Lambda_{f}, \geq)\}$ is clearly a net of points in A. By hypothesis, there is an α - β -adherent point z in A of this net. By (2), $\inf_{i \in \Lambda} (\beta cl F_{i})(z) < 1 - \alpha \Rightarrow$ there exists $i_{0} \in \Lambda$ such that $(\beta cl F_{i_{0}})(z) < 1 - \alpha$, i.e., $(1_{X} \setminus \beta cl F_{i_{0}})(z) > \alpha$. Since z is an α - β -adherent point of S, for the index $\{i_{0}\} \in \Lambda_{f}$, there is $\mu_{0} \in \Lambda_{f}$ with $\mu_{0} \geq \{i_{0}\}$ (i.e., $i_{0} \in \mu_{0}$) such that $\beta cl (1_{X} \setminus \beta cl F_{i_{0}})(x_{\mu_{0}})$

A Monthly Double-Blind Peer Reviewed Refereed Open Access International e-Journal - Included in the International Serial Directories Indexed & Listed at: Ulrich's Periodicals Directory ©, U.S.A., Open J-Gage as well as in Cabell's Directories of Publishing Opportunities, U.S.A. International Journal of Engineering & Scientific Research http://www.ijmra.us

> α , i.e., $\beta int \beta cl F_{i_0}(x_{\mu_0}) < 1 - \alpha$. Since $i_0 \in \mu_0$, $\inf_{i \in \mu_0} F_i(x_{\mu_0}) \le F_{i_0}(x_{\mu_0}) \le \beta int \beta cl F_{i_0}(x_{\mu_0}) < 1 - \alpha$.

 α , which contradicts (1). This completes the proof.

THEOREM 3.3. A crisp subset A of an fts X is α - β -almost compact if and only if every filterbase \mathscr{F} on A has an α - β -adherent point in A.

PROOF. Let A be α - β almost compact and let there exist, if possible, a filterbase \mathscr{F} on A having no α - β -adherent point in A. Then for each $x \in A$, there exist a fuzzy β -open set U_x with $U_x(x) > \alpha$, and an $F_x \in \mathscr{F}$ such that $(\beta cl U_x)(y) \le \alpha$, for each $y \in F_x$. Then $\mathscr{U} = \{U_x : x \in A\}$ is a fuzzy β -open α -shading of A. By α - β -almost compactness of A, there are finitely many points x_1, x_2, \ldots, x_n in A such that $\mathscr{U}_0 = \{\beta cl U_{x_i} : i = 1, 2, \ldots, n\}$ is also an α -shading of A. Choose $F \in \mathscr{F}$ such that $F \le \bigcap_{i=1}^n F_{x_i}$. Then $(\beta cl U_{x_i})(y) \le \alpha$, for all $y \in F$ and for $i = 1, 2, \ldots, n$. Thus \mathscr{U}_0 fails to be an α -shading of A, a contradiction.

Conversely, let the condition hold and suppose, if possible, $\{y_n : n \in (D, \geq)\}$ be a net in A having no α - β -adherent point in $A((D, \geq)$ being a directed set, as usual). Then for $x \in A$, there are a fuzzy β -open set U_x with $U_x(x) > \alpha$ and an $m_x \in D$ such that $(\beta cl U_x)(y_n) \le \alpha$, for all $n \ge m_x$ $(n \in D)$. Thus $\mathscr{T} = \{F_x : x \in A\}$, where $F_x = \{y_n : n \ge m_x\}$ generates a filterbase \mathscr{T} on A. By hypothesis, \mathscr{T} has an α - β -adherent point z (say) in A. But there are a fuzzy β -open set U_z with $U_z(z) > \alpha$ and an $m_z \in D$ such that $(\beta cl U_z)(y_n) \le \alpha$, for all $n \ge m_z$, i.e., for all $p \in$ $F_z \in \mathscr{R} (\subseteq \mathscr{T}), (\beta cl U_z)(p) \le \alpha$. Hence z cannot be an α - β -adherent point of the filterbase \mathscr{T} , a contradiction. Hence by Theorem 3.2, A is α - β -almost compact.

DEFINITION 3.4. A family $\{F_i : i \in \Lambda\}$ of fuzzy sets in an fts X is said to have α - β interiorly finite intersection property or simply α - β -IFIP in a subset A of X, if for each finite subset Λ_0 of Λ , there exists $x \in A$ such that $[\bigcap_{i \in \Lambda_0} \beta int F_i](x) \ge 1 - \alpha$.

A Monthly Double-Blind Peer Reviewed Refereed Open Access International e-Journal - Included in the International Serial Directories Indexed & Listed at: Ulrich's Periodicals Directory ©, U.S.A., Open J-Gage as well as in Cabell's Directories of Publishing Opportunities, U.S.A. International Journal of Engineering & Scientific Research http://www.ijmra.us **THEOREM 3.5.** A crisp subset A of an fts X is α - β -almost compact if and only if for every family $\mathscr{F} = \{F_i : i \in \Lambda\}$ of fuzzy β -closed sets in X with α - β -IFIP in A, there exists $x \in A$ such that $\inf_{i \in \Lambda} F_i(x) \ge 1 - \alpha$.

PROOF. Assuming $A (\subseteq X)$ to be α - β -almost compact, let $\mathscr{F} = \{F_i : i \in \Lambda\}$ be a family of fuzzy β -closed sets with α - β -IFIP in A. If possible, let for each $x \in A$, $\inf_{i \in \Lambda} F_i(x) < 1 - \alpha$, i.e., $(\bigcap_{i \in \Lambda} F_i)(x) < 1 - \alpha$ i.e., $1 - (\bigcap_{i \in \Lambda} F_i)(x) > \alpha \Rightarrow [\bigcup_{i \in \Lambda} (1_X \setminus F_i)](x) > \alpha$. Thus, $\mathscr{U} = \{1_X \setminus F_i : i \in \Lambda\}$ is a fuzzy β -open α -shading of A. By α - β -almost compactness of A, there is a finite subset Λ_0 of Λ such that $[\bigcup_{i \in \Lambda_0} \beta cl(1_X \setminus F_i)](x) = 1 - (\bigcap_{i \in \Lambda_0} \beta \operatorname{int} F_i)(x) > \alpha$, i.e., $(\bigcap_{i \in \Lambda_0} \beta \operatorname{int} F_i)(x) < 1 - \alpha$, for each $x \in A$, which shows that \mathscr{F} does not have α - β -IFIP in A, a contradiction.

Conversely, let $\mathscr{U} = \{U_i : i \in \Lambda\}$ be a fuzzy β -open α -shading of A. Thus $\mathscr{F} = \{\mathbf{1}_X \setminus U_i : i \in \Lambda\}$ is a family of fuzzy β -closed sets in X with $\inf_{i \in \Lambda} (\mathbf{1}_X \setminus U_i)(x) < 1 - \alpha$, for each $x \in A$, so that \mathscr{F} does not have $\alpha - \beta$ -IFIP in A. Hence for some finite subset Λ_0 of Λ , we have for each $x \in A$, $[\bigcap_{i \in \Lambda_0} \beta int(\mathbf{1}_X \setminus U_i)](x) < 1 - \alpha \Rightarrow 1 - (\bigcup_{i \in \Lambda_0} \beta cl U_i)(x) < 1 - \alpha$, for each $x \in A \Rightarrow A$ ($\bigcup_{i \in \Lambda_0} \beta cl U_i)(x) > \alpha$, for each $x \in A \Rightarrow A$ is $\alpha - \beta$ -almost compact.

Putting A = X in the characterization theorems so far of α - β -almost compact crisp subset A, we obtain as follows.

THEOREM 3.6. For an fts (X, τ) , the following are equivalent :

- (a) X is α - β -almost compact.
- (b) Every α-shading of X by fuzzy regular semiopen sets has a finite β-proximate αsubshading.
- (c) Every family of fuzzy β-open sets, the β-interiors of whose β-closures form an α-shading of X, contain a finite subfamily, the β-closures of whose members form as α-shading of X.

A Monthly Double-Blind Peer Reviewed Refereed Open Access International e-Journal - Included in the International Serial Directories Indexed & Listed at: Ulrich's Periodicals Directory ©, U.S.A., Open J-Gage as well as in Cabell's Directories of Publishing Opportunities, U.S.A. International Journal of Engineering & Scientific Research http://www.ijmra.us

(d) For every collection $\{F_i : i \in \Lambda\}$ of fuzzy β -open sets in X with the property that for each finite subset Λ_0 of Λ , there is $x \in X$ such that $\inf_{i \in \Lambda} F_i(x) \ge 1 - \alpha$, one has

 $inf(\beta cl F_i)(y) \ge 1 - \alpha$, for some $y \in X$.

- (e) Every net in X has an α - β -adherent point in X.
- (f) Every filterbase on X has an α - β -adherent point in X.
- (g) For every family $\mathcal{F} = \{F_i : i \in \Lambda\}$ of fuzzy β -closed sets in X with α - β -IFIP
 - in X, there exists $x \in X$ such that inf $F_i(x) \ge 1 \alpha$.

REFERENCES

- 1. Azad, K.K. ; On fuzzy semi-continuity, fuzzy almost continuity and fuzzy weakly continuity, J. Math. Anal. Appl. 82 (1981), 14 32.
- 2. Bhattacharyya, Anjana; β^* -closure operator in fuzzy setting, The Journal of Fuzzy Mathematics Vol. 22, No. 1 (2014), 203-212.
- 3. Chang, C.L.; Fuzzy topological spaces, J. Math. Anal. Appl. 24 (1968), 182 190.
- Fath Alla, M.A. : On fuzzy topological spaces, Ph.D. Thesis, Assiut Univ., Sohag, Egypt (1984).
- Gantner, T.E., Steinlage, R.C. and Warren, R.H.; Compactness in fuzzy topological spaces, J. Math. Anal. Appl. 62 (1978), 547 – 562.
- Mashhour, A.S., Ghanim, M.H. and Fath Alla, M.A. : α-separation axioms and αcompactness in fuzzy topological space, Rochy Mountain Journal of Mathematics 16(3) (1986), 591-600.
- Mukherjee, M.N. and Bhattacharyya, Anjana; α-almost compactness for crisp subsets in a fuzzy topological space, J. Fuzzy Math. 11 (1) (2003), 105 – 113.
- 8. Pu, Pao Ming and Liu, Ying Ming; Fuzzy topology I. Neighbourhood structure of a fuzzy point and Moore-Smith convergence, Jour. Math. Anal. Appl. 76 (1980), 571 599.
- 9. Zadeh, L.A.; Fuzzy Sets, Inform. Control 8 (1965), 338 353.

A Monthly Double-Blind Peer Reviewed Refereed Open Access International e-Journal - Included in the International Serial Directories Indexed & Listed at: Ulrich's Periodicals Directory ©, U.S.A., Open J-Gage as well as in Cabell's Directories of Publishing Opportunities, U.S.A. International Journal of Engineering & Scientific Research http://www.ijmra.us

